Задачи с экзамена Классическая механика 2018

Билет 1

Два одинаковых бруска, соединенные пружиной, установлены на столе так, что центры брусков находятся на одной вертикали. На верхний брусок надавливают сверху с некоторой силой, а затем отпускают. Какова должна быть величина этой силы F, чтобы в процессе движения нижний брусок оторвался от стола? Масса каждого бруска равна m.

Билет 2 (~15.7)

Найти среднюю высоту, на которую поднимается частица массы m в однородном поле тяготения при температуре T.

Билет 3 (§14)

Найти объём воды, прошедшей через трубу, размеры трубы и давления даны.

Билет 4 (~6.1)

Подвижная система отсчета S` движется со скоростью V=0.8с относительно неподвижной системы S так, что направление осей x` и x совпадают. Частица движется в направлении оси x` со скоростью v_x ` = 0.8с относительно подвижной системы. Какова скорость этой частицы v_x относительно неподвижной системы отсчета?

Билет 5 (§2)

Найти матрицу, осуществляющую поворот на 90° вокруг оси Ох декартовой системы координат.

Билет 6 (10.12)

Маленький шарик подвешен на нити длинной l. В начальный момент нить составляет с вертикалью угол Θ_0 , а шарик имеет скорость \mathbf{v}_0 , направленную горизонтально. Найти величину \mathbf{v}_0 , если известно, что при дальнейшем движении угол отклонения нити от вертикали возрастет до величины Θ_1 , а затем начнет уменьшаться. Сопротивлением воздуха пренебречь.

Билет 8 (~4.2)

Тело свободно падает под действием силы тяжести без начальной скорости. Сила сопротивления воздуха пропорциональна скорости. Найти зависимость v(t) скорости тела от времени?

Билет 9 (12.10)

Гантелька представляет собой два шарика массами m_1 и m_2 , соединенные невесомым стержнем длины l. Гантельку кладут в гладкую сферическую чашу радиуса R=l. Найти угол α между гантелькой и горизонталью в положении равновесия.

Билет 10 (1.1)

Задан закон движения точки в полярных координатах r = r(t), $\phi = \phi(t)$. Найти модуль скорости точки как функцию времени v = v(t).

Билет 11 (2.7)

Стержень длины l скользит в вертикальной плоскости, опираясь одним концом на вертикальную, а другим на горизонтальную плоскости. В некоторый момент времени скорости концов стержня составляют v_1 и v_2 . Какова угловая скорость вращения стержня ω в этот момент времени?

Билет 12 (7.8)

Поезд движется с постоянным ускорением а на прямолинейном горизонтальном участке пути. В одном из вагонов к потолку подвешен на нити, длиной l, маленький шарик. Шарик отклоняют от положения равновесия и отпускают. Найти период колебаний шарика T.

Билет 13 (3.1)

Пловец переплывает реку шириной L по прямой, перпендикулярной берегу, и возвращается обратно, затратив на весь путь $t_1 = 4$ минуты. Проплывая такое же расстояние L вдоль берега реки и возвращаясь обратно, пловец затрачивает время $t_2 = 5$ минут. Найти, во сколько раз α скорость пловца относительно воды превышает скорость течения реки, считая её по всей ширине реки постоянной?

Билет 14

Найти период колебаний математического маятника, длины l.

Билет 15

К струне массой m, длиной L приложили силу Т. С какой частотой будет колебаться струна?

Билет 16 (3.7)

Корабль идёт на запад со скоростью v. Известно, что ветер дует с юго-запада. Скорость ветра, измеренная относительно палубы корабля, равна u₀. Найдите скорость ветра u относительно земли.

Билет 17

Спутник движется вокруг планеты со скоростью v по круговой орбите радиуса r. До какой величины v_1 нужно уменьшить скорость спутника, чтобы он перешёл на эллиптическую орбиту, касающуюся поверхности планеты? Радиус планеты R.

Билет 18 (~9.19)

Столб высотой 5м подпиливают у основания. Определить скорость центра столба в момент соприкосновения с землей.

Билет 19

Даны две материальные точки массой m_1 и m_2 , расстояние между ними г. Найти потенциальную энергию системы.

Билет 21

Стержень длины l лежит на гладкой поверхности, в один из его концов бьют с силой F перпендикулярно. Найти расстояние, на которое сместится центр масс стержня за время, равное совершению одного оборота (2π) .

Билет 22 (9.1)

Цилиндр скатывается по наклонной плоскости, образующей с горизонталью угол α . Отсутствует проскальзывание. Найдите ускорение центра цилиндра.

Билет 23 (9.1)

Цилиндр скатывается по наклонной плоскости, образующей с горизонталью угол α . Каким должен быть коэффициент трения μ между цилиндром и плоскостью, чтобы цилиндр катился без проскальзывания?

Билет 24 (9.18)

Бильярдном шару ударом сообщили поступательное движение со скоростью v_0 . Через какое время t движение шара перейдёт в качение без проскальзывания? Коэффициент трения шара о поверхность стола μ . Момент инерции шара относительно оси, проходящей через центр шара, $I = 2/5 \text{ mR}^2$, где m — масса шара, R — его радиус.

Билет 25 (15.4)

Идеальный газ находится в сосуде объёмом V при температуре Т. Используя законы Ньютоны и распределение Максвелла, найти давление газа ρ , если число молекул равно N.

Безбилетные

С какой минимальной скоростью надо кинуть мяч, чтобы он вылетел за пределы Земли, если радиус Земли равен 6400км, а трением воздуха можно пренебречь?

Математический маятник, длины L. У него гармонические колебания по формуле $\alpha(t)$ = $\alpha_0 \sin(\omega t)$, где α - текущее отклонение угла от состояния равновесия, α_0 - амплитуда угла, ω - частота. Найти полное ускорение грузика в положении $\alpha = 0$, $\alpha = +\alpha_0$, $\alpha = -\alpha_0$ (доп. задача)

- (6.11) На частицу, движущуюся со скоростью V = 0.5с, действует сила, направленная под углом α к вектору скорости. Найти угол β (β != α) между направлениями скорости и ускорения частицы. (доп. задача)
- (6.2) Собственными размерами тела называются его размеры в той системе отсчета, в которой оно покоится. Пусть стержень собственной длинной L`, расположенный параллельно оси ОХ, движется вдоль по этой оси со скоростью V. Какова длина L движущегося стержня, измеренная в неподвижной системе отсчета?
- (~ 9.4) Однородному сплошному шару массой m и радиусом R сообщили вращение вокруг оси с угловой скоростью ω_0 , положили на горизонтальную плоскость и предоставили самому себе. Определить, через какое время t_0 движение шара перейдёт в качение без проскальзывания, если коэффициент трения между шаром и плоскостью равен μ . Какая часть начальной кинетической энергии шара перейдёт при этом в тепло?